Example Projects
Workshops
Announcements
Actuators
Connections
Power
Sensors
Traces
Circuits and Code Wireless

Conductive Materials
Non-Conductive Materials
Tools
Techniques
Thinking Out Loud
Sensors
  • 3D Printed Sensors
  • Adjustable Slider
  • Analog Pin Stroke Sensor
  • Anti-Static Foam Pressure Matrix
  • Balloon Sensor
  • Bonded Bend Sensor
  • Capacitive Fabric Slider/Wheels
  • Circular Knit Inflation Sensor
  • Circular Knit Stretch Sensors
  • Conductive Pompom
  • Constructed Stretch Sensors
  • Crochet Button
  • Crochet Conductive Bead
  • Crochet finger Sensor
  • crochet pressure sensor
  • Crochet Tilt Potentiometer
  • Crochet/Knit Pressure Sensors
  • Crochet/Knit Squeeze Sensors
  • Danish Krown Slide-Switch
  • Resistive Sensors
  • Elastic Button Fabric
  • Embroidered Potentiometers
  • Fabric Button
  • Fabric Potentiometer
  • Fabric Stretch Sensors
  • felted crochet pressure sensor
  • Felted Pompom Pressure Sensor
  • Finger Sensor
  • Fingertip Contact Switch
  • Fish Scale Sensor
  • Fleckerlteppich Pressure Sensor
  • Position Sensing on the Body
  • JoyButton
  • Knit Ball Sensors
  • Knit Contact Switch
  • Knit Stroke Sensors
  • Knit Touchpad
  • Knit Wrist Sensors
  • Knit Accelerometer
  • Knit Stretch Sensors
  • Light Touch Pressure Sensor
  • Neoprene Bend Sensor
  • Neoprene Pressure Sensor
  • Neoprene Pressure Sensor Matrix
  • Neoprene Stroke Bracelet
  • painted stretch sensor
  • Piezoresistive Fabric Touchpad
  • Pin Stroke Gauntlet
  • Pompom Tilt Sensor
  • Sheath Bend Sensor
  • Simple Pressure Sensor Matrix - by hand
  • Simple Pressure Sensor Matrix - by machine
  • Simple Fabric Pressure Sensors
  • Spikey Stroke Sensors
  • Stickytape Sensors
  • Stroke Sensor
  • Tilt Potentiometer
  • Tilt Sensor
  • Wimper Switch
  • Woven Pressure Sensor Matrix
  • Woven Pressure sensors
  • Zebra Fabric Stroke Sensors
  • Zipper Slider
  • Zipper Switch
  • About
  • E-Textile Events
  • E-Textile Spaces
  • Newsletter
  • Print & Publications
  • Shopping Local

  • SEARCH
    Content by Mika Satomi and Hannah Perner-Wilson
    The following institutions have funded our research and supported our work:

    From 2013-2015 Mika is a guest professor at the eLab at Kunsthochschule Berlin-Weissensee

    From July - December 2013 Hannah was a researcher at the UdK's Design Research Lab

    From 2010-2012 Mika was a guest researcher in the Smart Textiles Design Lab at The Swedish School of Textiles

    From 2009 - 2011 Hannah was a graduate student in the MIT Media Lab's High-Low Tech research group led by Leah Buechley


    In 2009 Hannah and Mika were both research fellows at the Distance Lab


    Between 2003 - 2009 Hannah and Mika were both students at Interface Cultures
    We support the Open Source Hardware movement. All our own designs published on this website are released under the Free Cultural Works definition
    Sensors

    Knit Touchpad

    This rectangular piece of knit, cut from an anti-static glove, has different resistance ranges, depending if you measure across the rows or columns of the stich.

    >> Instructable

    The range of resistance across the columns of stiches is about 30K Ohm. The range of resistance across the rows of stitches is about 90 K Ohm. This means that it is hard to measure multiple rows across rows, because the resistance across the columns is so much lower and so the measurements are all too similar. Measuring multiple rows across columns is possible and is demonstrated in one of the videos below.
    In another example I measure from all four corners. In both examples, the common ground or VCC is attached to a little conductive fabric worn on the finger touching the knit. At one point the finger cap was a bit inconvenient and so I exchanged it for a large metal nail (my eqivalent of a pen).
    My code is very very primative, so I’m sure that a lot more could be done for the smoothness of the visualization here.

    Videos on YouTube

    Measuring from one side at four points across columns of stitches.

    Measuring from all four corners.

    Video

    Pictures on Flickr



    Leave a comment