Example Projects
Workshops
Announcements
Actuators
Connections
Power
Sensors
Traces

Circuits and Code Wireless

Meet the Materials
Conductive Materials
Non-Conductive Materials
Tools
Techniques
Thinking Out Loud
Tools
  • ATtiny Breadboard Programming Piggyback Extension
  • ATtiny Programming Shield
  • Breadboard Pincushion
  • Circular Knitting Looms
  • Circular Knitting Machines
  • Circular Sock Knitting Machines
  • Circular Weaving Looms
  • CNC Textile Machines
  • desoldering wick
  • digital USB microscope
  • DIY Mini Breadboard
  • ESP octopus sewable breakout
  • ETextile Tester Bracelet
  • Fabric Markers
  • Fabric Scissors
  • File
  • Hole Maker
  • Hot Air Gun
  • Craft Iron
  • ISP Alligator Clip Extension
  • Laser Cutter
  • LilyPad SnapRing
  • MINI CLIP CLAMPS
  • MQTT Brokers and Clients
  • MQTT client
  • multimeter hat
  • Needle Threader
  • ohmBroach
  • ohmGlove
  • ohmHook
  • ohmTranslator
  • Pincushion Breadboard Bracelet
  • Pompom Maker
  • Popper Machines
  • Prototyping with Snaps
  • CNC Milling Machine
  • Resistance Visualization Tool
  • Seam-Ripping Continuity Meter
  • Sewing Machines
  • Snap Press Options
  • SNIPS
  • Knitting dolly
  • Spudger
  • Tester Overview
  • Tester Tool: bracelets
  • Tester Tool: circle
  • Tester Tool: simple strip
  • Tester Tool: u-shape
  • Thin nose pliers
  • Vibrating Crochet Hook
  • Vinylcutter
  • Wire Wrap Tool
  • Support the creation of content on this website through PATREON!
  • About
  • E-Textile Events
  • E-Textile Spaces
  • Newsletter
  • Print & Publications
  • E-Textile Shopping

  • SEARCH
    Content by Mika Satomi and Hannah Perner-Wilson
    E-Textile Tailor Shop by KOBAKANT
    The following institutions have funded our research and supported our work:

    Since 2020, Hannah is guest professor of the Spiel&&Objekt Master's program at the University of Performing Arts Ernst Busch in Berlin

    From 2013-2015 Mika was a guest professor at the eLab at Kunsthochschule Berlin-Weissensee

    From July - December 2013 Hannah was a researcher at the UdK's Design Research Lab

    From 2010-2012 Mika was a guest researcher in the Smart Textiles Design Lab at The Swedish School of Textiles

    From 2009 - 2011 Hannah was a graduate student in the MIT Media Lab's High-Low Tech research group led by Leah Buechley


    In 2009 Hannah and Mika were both research fellows at the Distance Lab


    Between 2003 - 2009 Hannah and Mika were both students at Interface Cultures
    We support the Open Source Hardware movement. All our own designs published on this website are released under the Free Cultural Works definition
    Tools

    ohmBroach

    This wearable tool translates resistance into colour and sound.

    low frequency – low resistance
    high frequency – high resistance

    white – low resistance
    yellow
    green
    blue
    purple
    red – high resistance



    Process


    1) COMPONENTS
    footprint
    datasheet
    pins, leads
    spacing, pitch (through-hole pitch: 0,1inch = 2.54mm)
    DIP, SMD


    2) SCHEMATIC
    what connects to what?


    3) LAYOUT
    – by hand on paper….
    – in a vector drawing program (Inkscape, Illustrator, Freehand, Coraldraw…)
    – in a PCB layout software (KiKad, Eagle, Fritzing, 123D Circuits…)


    4) LAYERS
    base
    conductor
    “jumps”
    mask


    5) PRODUCTION
    cut (vinyl, laser)
    mill
    print
    etch
    hand (cut, embroider, sew…)

    ATtiny45/85 datasheet >> http://www.atmel.com/images/atmel-2586-avr-8-bit-microcontroller-attiny25-attiny45-attiny85_datasheet.pdf

    /*
    CODE for the ohmToolMultiMeter example
    first built for the E-Textile Summer School
    FlexPCB and ATtiny Programming Workshop
    by Hannah Perner-Wilson and Irene Posch
    07_2017, Paillard/France
    >> http://etextile-summercamp.org/2017/summerof/fri-textile-pcbs-attiny-programming/
    */

    #include
    SoftwareSerial mySerial(0, 4); // RX, TX

    #include
    #ifdef __AVR__
    #include
    #endif
    #define pixelPIN 1
    #define NUMPIXELS 1
    Adafruit_NeoPixel strip = Adafruit_NeoPixel(NUMPIXELS, pixelPIN, NEO_GRB + NEO_KHZ800);

    #define soundPIN 2
    #define probePIN 3
    #define soundMULTIPLY 40

    int probeValue = 0;
    int modeState = 0;
    int lastModeState = 0;
    int mode = 0;
    int probeMIN = 0;
    int probeMAX = 1023;

    void setup()
    {
    mySerial.begin(9600);
    pinMode(probePIN, INPUT_PULLUP); // does internal pullup command work on ATtiny? otherwise: “digitalWrite(probePIN, LOW);”
    pinMode(soundPIN, OUTPUT);

    // make light and sound to signal ON:
    strip.begin();
    strip.setPixelColor(0, strip.Color(255, 255, 255));
    strip.show(); // This sends the updated pixel color to the hardware.

    noise(soundPIN, 1 * soundMULTIPLY, 300);
    noise(soundPIN, 1023 * 20000, 300);
    }

    void loop()
    {
    probeValue = analogRead(probePIN);
    mySerial.print(probeValue);
    mySerial.print(“\t”);

    int mappedProbeValue = constrain(probeValue, probeMIN, probeMAX);
    mappedProbeValue = map(probeValue, probeMIN, probeMAX, 0, 255);
    mySerial.println(mappedProbeValue);

    //if there is no connection turn led and sound off:
    if (mappedProbeValue > 250) {
    strip.setPixelColor(0, strip.Color(0, 0, 0)); //OFF
    strip.show(); // This sends the updated pixel color to the hardware
    }
    //if there is “direct” connection turn led white and sound on:
    else if (mappedProbeValue < 10) { noise(soundPIN, 10000, 1); //MAKE SOUND DEPENDANT ON PROBE VALUE!!!! strip.setPixelColor(0, strip.Color(255, 255, 0)); strip.show(); // This sends the updated pixel color to the hardware } //if there is a connection turn led to colour and frequency to value: else { noise(soundPIN, mappedProbeValue * soundMULTIPLY, 1); //MAKE SOUND DEPENDANT ON PROBE VALUE!!!! strip.setPixelColor(0, Wheel(mappedProbeValue)); //strip.setPixelColor(0, strip.Color(100, 0, 0)); strip.show(); // This sends the updated pixel color to the hardware. } } // MAKE SOUND ON THE ATTINY WITHOUT THE SOUND LIBRARY: void noise (unsigned char noisePin, int frequencyInHertz, long timeInMilliseconds) { int x; long delayAmount = (long)(1000000 / frequencyInHertz); long loopTime = (long)((timeInMilliseconds * 1000) / (delayAmount * 2)); for (x = 0; x < loopTime; x++) { digitalWrite(noisePin, HIGH); delayMicroseconds(delayAmount); digitalWrite(noisePin, LOW); delayMicroseconds(delayAmount); } } // Input a value 0 to 255 to get a color value. // The colours are a transition r - g - b - back to r. uint32_t Wheel(byte WheelPos) { WheelPos = 255 - WheelPos; if (WheelPos < 85) { return strip.Color(255 - WheelPos * 3, 0, WheelPos * 3); } if (WheelPos < 170) { WheelPos -= 85; return strip.Color(0, WheelPos * 3, 255 - WheelPos * 3); } WheelPos -= 170; return strip.Color(WheelPos * 3, 255 - WheelPos * 3, 0); }



    Leave a comment