Example Projects
Workshops
Announcements
Actuators
Connections
Power
Sensors
Traces

Circuits and Code Wireless

Meet the Materials
Conductive Materials
Non-Conductive Materials
Tools
Techniques
Thinking Out Loud
Sensors
  • 3D Printed Sensors
  • Adjustable Slider
  • Analog Pin Stroke Sensor
  • Balloon Sensor
  • Beaded Sway Sensor
  • Beaded Tilt Sensor Swatch
  • Bonded Bend Sensor
  • Button Buttons
  • Button Switch
  • Capacitive Fabric Slider/Wheels
  • Cast Pressure Sensor
  • Circular Knit Inflation Sensor
  • Circular Knit Stretch Sensors
  • Conductive Pompom
  • Constructed Stretch Sensors
  • Copper Pompom
  • Crochet Button
  • Crochet Conductive Bead
  • crochet crotch lemon
  • Crochet finger Sensor
  • crochet pressure sensor
  • Crochet Tilt Potentiometer
  • Crochet/Knit Pressure Sensors
  • Crochet/Knit Squeeze Sensors
  • dangle data gloves
  • Danish Krown Slide-Switch
  • Dataglove Flex Sensor Rig
  • Donut Pot
  • Resistive Sensors Overview
  • Elastic Button Fabric
  • Embroidered Potentiometers
  • extreme knobbly knee sensor
  • Fabric Button
  • Fabric Potentiometer
  • Fabric Stretch Sensors
  • felted crochet pressure sensor
  • Felted Pompom Pressure Sensor
  • Finger Sensor
  • Fingertip Contact Switch
  • Fish Scale Sensor
  • Fleckerlteppich Pressure Sensor
  • Position Sensing on the Body
  • interested sensor #2
  • interested sensor #1
  • JoyButton
  • Kinesiology Tape bend sensor
  • Knit Ball Sensors
  • Knit Contact Switch
  • Knit Stroke Sensors
  • Knit Touchpad
  • Knit Wrist Sensors
  • Knit Accelerometer
  • Knit Stretch Sensors
  • Light Touch Pressure Sensor
  • Magnetic Pincushion Sensor
  • Matrix: Anti-Static Foam
  • Matrix: Kapton + Copper
  • Matrix: Neoprene
  • Matrix: Simple (by hand)
  • Matrix: Simple (by machine)
  • Matrix: Soft Fabric
  • Matrix: Stretchy Touchpad
  • Matrix: Woven (non-stretch)
  • Matrix: Woven (stretchy)
  • Needle Felt Squeeze Sensor
  • Neoprene Bend Sensor
  • Neoprene Pressure Sensor
  • Neoprene Stroke Bracelet
  • painted stretch sensor
  • Paper + Aluminum foil pressure sensor
  • Paper + Aluminum foil contact switch
  • Piezoresistive Fabric Touchpad
  • Pin Pot
  • Pin Stroke Gauntlet
  • Pompom Tilt Sensor
  • Pressure Button
  • Sheath Bend Sensor
  • Simple Fabric Pressure Sensors
  • DON'T TOUCH, MOVE
  • Skin Sensor
  • Sole Sensing
  • Spikey Stroke Sensors
  • Spinning Sensor Yarn
  • Stickytape Sensors
  • Stocking Skin Stretch Sensor
  • Stroke Sensor
  • Textile Sensor Demos for Summer School
  • Tilt Potentiometer
  • Tilt Potentiometer II
  • Tilt Sensor
  • VOLTAGE DIVIDER worksheet
  • Voodoo Sensor
  • Wimper Switch
  • Woven Pressure sensors
  • Wrist-Flick-Sensor
  • Zebra Fabric Stroke Sensors
  • Zipper Slider
  • Zipper Switch
  • Support the creation of content on this website through PATREON!
  • About
  • E-Textile Events
  • E-Textile Spaces
  • Newsletter
  • Print & Publications
  • E-Textile Shopping

  • SEARCH
    Content by Mika Satomi and Hannah Perner-Wilson
    E-Textile Tailor Shop by KOBAKANT
    The following institutions have funded our research and supported our work:

    Since 2020, Hannah is guest professor of the Spiel&&Objekt Master's program at the University of Performing Arts Ernst Busch in Berlin

    From 2013-2015 Mika was a guest professor at the eLab at Kunsthochschule Berlin-Weissensee

    From July - December 2013 Hannah was a researcher at the UdK's Design Research Lab

    From 2010-2012 Mika was a guest researcher in the Smart Textiles Design Lab at The Swedish School of Textiles

    From 2009 - 2011 Hannah was a graduate student in the MIT Media Lab's High-Low Tech research group led by Leah Buechley


    In 2009 Hannah and Mika were both research fellows at the Distance Lab


    Between 2003 - 2009 Hannah and Mika were both students at Interface Cultures
    We support the Open Source Hardware movement. All our own designs published on this website are released under the Free Cultural Works definition
    Sensors

    Skin Sensor

    Instead of using fabric as the base for the sensor, it is funny to use transparent medical foil for skin protection. it creates sensors that is proximate to skin like tattoos.

    I bought this medical foil at the local Apotheke (drug/medicine store) in Germany. I have also asked the Tattoo shops near-by. They were happened to be out of stock, but it is used for skin protection after getting tattoos and often they sell them.

    The foil comes with two backing layers. Paper backing on sticky side, and transparent foil on top side. Remove the transparent (top) side first with pinsett (this is a bit tricky part) and place the content of the sensor.

    For Bend sensor, I placed two strand of conductive thread on the skin foil using glue, then place one strip of eeonyx stretch resistive fabric. Cut out another piece of skin foil that is the same size as the base foil. Peal off the sticky side backing and place on top of the constructed sensor so they stay in place.

    Peel the backing paper out from the sticky side and place on the skin. It stick to the skin like second skin. It is water proof (I even took shower and it still works) and can easily stay on your skin for few days.

    It shows hysteresis but you can see the resistance change as I move my finger.

    After it getting used to my hand movement and tested again. It now shows even better range. The copper color on top is copper colored gold leaf. It was a test to see if I can get the different look, and not connected to conductive layer. It should not be affecting the electrical function of it (you do not need the copper leaf layer for function)

    I have tried using copper fabric petals to make contact switch. The design is from the Fish Scale Sensor.

    It kind of works, but needs some improvements in getting reliable contacts.



    Leave a comment